Tetrahedron Letters No. 37, pp. 4437-4443, 1966. Pergamon Press Ltd. Printed in Great Britain.

A TRANSANNULAR HYPOOHROMISM OBSERYBD IN A CYCLIC DIACETYLENE CONTAINIHG NAPHTHALENB NUCLRUS
Takashi Ando and Masazumi Makagawa
Department of Cheaintry, Faculty of Science, Osaka Univereity
Toyonaka, Osaka, Jepan
(Received 27 June 1966; in revised form 15 July 1966)

The absorption intensity in the leotronic spectrum of a native nucleic acid has been found to be woaker than the sum of the intensities of indiridual mononucieotides constituting the nucieic acid ${ }^{1}$. This phemomenon has been explained in terme of the dieperaion-foro interaction betwoen the transition momont dipoles stacked in paraliel position and a quantitative treatment of this theory has been advanced by Tinoco and Rhodes?

1,5-Bis(propargyloxymethyl)naphthalene (I, m.p. 79.9$80.5^{\circ} \mathrm{C}$) which was derived from disodio derivative of $1,5-b i s-$ (hydroxymethyl)naphthalene and propargyl bromide was subjected to the Egiinton' oxidative coupling under a high dilution condition. A chromatography on alumina of the reaction producta afforded three cycilc acetylenes, i.e., the cyciic monomer (IIn,

 $a: n=1$
(II) b:n=z
c: $n=3$
3.8\%, m.p. 160-170 ${ }^{\circ} \mathrm{C}$ (decom.), Jol. wt., 246 (oamometry in
 3.7\%, m.p. 190-200 ${ }^{\circ} \mathrm{C}$ (deoom.), Mo1. wt., 546 (Rast), oalcd. for $\left(C_{1,} \mathrm{H}_{\mathbf{2}} \mathrm{O}_{\mathrm{s}}\right)_{2} 525$) and the cyolic trimer ($I I_{c}, 4.8 \%$, gradual decomposition was obsorved from $130^{\circ} \mathrm{C}$, Mol. vt., 732 (Rast), oaled. for ($\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{O}_{8}$) 8787).

The electronic apeotral deta and the absorption ourvea of the cyolic acetylenes ($I I_{\text {anc }}$) are shown in Table 1 and Fig. 1, respectively. The absorption curves of these compounds

TABLE 1
The Blectronio Spectral Data of $\mathrm{II}_{\text {ano }}$

I_{a}	$\lambda_{\max }$	230	278	288.5	300	$315.5 \mathrm{~m} \mu$
	ε	53,100	4,760	5,780	4,110	410
I_{b}	$\lambda_{\max }$	231	278	288	298.5	315
	E	123,400	13,380	16,380	11,380	1,180
I_{c}	$\lambda_{\max }$	230	277.5	287.5	298.5	315
	ε	190,200	21,420	26,490	18,540	1,750

closely related to that of naphthalene. The absorption curves of II_{b} and II_{c} were found to be almost identionl with thet of the open chain parent compound (I) excopting the increased absorption intensity at ca. 245 m μ indicating the minor contribution of the diacetylenic ohromophore in $I I_{b}$ and $I I_{c}$. Whereas, a remarkable hypochromizm was observed in the apectrum of IIa. The relative absorption intensities of each of the three absorption bands as compared with those of II_{c} are sumarized in Table 2.

Fig. 1. The Electronic Spectra of $\mathrm{II}_{\mathrm{anc}}$ and I
The curves of $I I_{b}$ and $I I_{c}$ were drawn using the reduced E-values corresponding to the unit chromophore, i.e., $\varepsilon / 2$ and $\varepsilon / 3$, respeotively. (solventi dioxane)
table 2
The Relative Intensities*

absorption band ${ }^{* *}$	$\beta-(\sim 230 \mathrm{~m} \mu)$	para- $(\sim 280 \mathrm{~m} \mu)$	$\alpha-(\sim 315 \mathrm{~m} \mu)$
$I I_{c}$	100	100	100
$I I_{\mathrm{b}}$	97	93	101
$I I_{\mathrm{a}}$	84	65	70

[^0]two conformations are possible to rotain the maximum distance between the diyne unit and the naphthalene nucieus. The projection of the molecular geometry corresponding to these two conformations (A and B) are shown in Iig. 2. The distance (R)

Fig. 2. The Possible Conformations of II_{a}
between the diyne unit and the aromatic nucleus, and the angle (θ) between the short axis of the nucleus and the bridging ohain were estimated to be $R=2.26 \dot{A}, \theta=21$ for (A) and $R=$ $2.12 \dot{A}$ and $\theta=38^{\circ}$ for (B).

As Eumarized in Table 2 , the hypochronism of the paraband (${ }^{2} L_{a} L^{2} A$) was found to be atronger than that of β-band ($\left.{ }^{1} B_{b}{ }^{-1} A\right)$. As the direction of the transition moment of paraband hes been ateigned to be perpendiouler to the long axif of naphthalenc nucleus, and the direction of the transition moment of diyne chromophore is obviously parallel to the long exis of the linear linkage, the pronounced hypochromism of para-band seems to indicate an operation of the diepersionforce interaction betweon the transition moment dipeles.

The original equation proposed by Rhodes is designed for poiymeric substance bearing large number of chromophores.

For molecule having two chromophorio groups, we can convert: the original formula into the foliowing equation (I), whioh represents the ohange of the oso111ator strength (f) of the absorption band of ohromophore A by the interection of 1ight induced dipoles of the absorption band of chromophore B.

$$
\begin{equation*}
\frac{f_{A}^{\prime}}{f_{A}}=1-4 K \sum_{B} \frac{f_{B}}{\tilde{v}_{B}^{2}-\tilde{v}_{A}^{2}} \times G_{A B} e_{B} \cdot e_{A} \tag{1}
\end{equation*}
$$

where f^{\prime} : the osciliator strongth of an absorption band in chromophore A under the hypochromic effect. f_{A} : the inierent osciliator atrength of the absorption band in chromophore A.

$$
\begin{aligned}
& K: \frac{3 e^{2}}{8 \pi^{2} c^{2} m}=1.07 \times 10^{10} A \cdot \mathrm{~cm}^{-2} \\
& \text { C represents ilght velocity in vaouo. } e \text { and } m \\
& \text { are the charge and the mass of an electron. } \\
& \tilde{\nu} \text { : the transition energies in terms of wavenumbers. } \\
& G_{A B}=\left[\frac{\mathbb{Q}_{A} \cdot \mathbb{Q}_{B}}{R_{A B}^{3}}-3 \frac{\left(\mathbb{E}_{A} \cdot \mathbb{R}_{A B}\right)\left(\mathbb{Q}_{B} \cdot \mathbb{R}_{A B}\right)}{R_{A B}^{5}}\right] \\
& P_{A}, e \text { : unit vectors in the direction of the respective } \\
& \text { transition moments in chromophore } A \text { and } B \text {. } \\
& \mathbb{R}_{A!} \text { : the vactor distance between the centers of the two } \\
& \text { chromophores. } \\
& \text { The change of two absorption bands (} \beta \text { - and para-bands) } \\
& \text { of the cyciic monomer (} I I_{a} \text {) by the interaction with the three } \\
& \text { absorption bands of diacetylenic chromophore were calculated } \\
& \text { according to the equation (1). The hypochromism of } \alpha \text {-band was } \\
& \text { not taken into consideration, as the } \alpha \text {-band ras partly ab-" }
\end{aligned}
$$

merged in the tail of the para-band. The electronic spectral data of tetradeca-6,8-diyne [226 m $\mu(\varepsilon 360) ; 240(350) ; 254$ (200)] in iso-octane and those of the cyclic trimer ($I I_{c}$) were used as the references of diyne and naphthalene chromophores, respectively. The oscillator atrength was approximately estimated according to the equation, $f=\varepsilon \times \nu / 0.464 \times 10^{\circ}$. R= $2.26 \dot{A}$ and $\theta=21^{\circ}$ were substituted to the geometry dependent term in (1), and the two chromophoric groups were assumed to be perpendicular to the vector distance between the centexs of the two groups. These assumptions correspond to the conformation (A) in rig. 2. The results of the calculation are summarized in Table 3 (a). The agreement with the observed TABLE 3
The Results of Calculation

	β-band	para-band
f^{\prime} / f	calcd. 0.88	0.50
	obsd. 0.84	0.65

(a)

	θ	R
calcd.	28°	2.46 A
est'd.	21°	$2.26 \mathrm{~A}^{\circ}$

(b)
values appears to be rather good, even if it is not entirely satisfactory, in view of the crude estimation of R and θ basing on the molecular model. Inversely, R and θ were calculated employing observed f^{\prime} / f. The results are shown in Table 3 (b). The angle between the two chromophoric groups (θ) agreed fairly well with the estimated value, but the distance (R) was larger than the estimated value. This results seem to be reasonable taking the repulsion of the π-electron clouds of the bridging chain and the aromatic nucleus into consideration.

The hypoohromism attributable to the interaction between transition moment dipoles was observed recently in spiroohroman derivative ${ }^{5}$ and diphenylailoxanes". The hypochromism obsorved in the cyclic diacetylene ($I I_{a}$) afforded another interesting example of the same phenomenon, because the molecule is constrained to keep a fairly definite geometry holding the ohromophoric groups in the fixed spatial positions and also the -1eotronic transitione of the two ohromophorea are rather well understood.

Acknowledgement: We are most grateful to Dr. Jiro Tanaka of Nagoya University for his helpful suggestions and discussions.

Reforences

1) G. H. Beaven, E. R. Holiday and B. A. Johnson, "The Nucleic Acids", Vol. 1, Academic Press, Inc., Now York, (1955), p. 493 : P. D. Lawley, Blochim. Biophys. Acta, 21, 481 (1956): R. Thomas, ibid., 14, 1231 (1954) ; K. K. Reddi, ibid., 27, 1 (1958). of. K. Imahori and J. Tanaka, J. Mol. Biol., 1, 359 (1959).
2) I. Tinoco, Jr., J. Amer. Chom, Soc., 82, 4785 (1960).
3) W. Rhodes, ibid. , 83, 3609 (1961).
4) C. J. Brown, J. Chem. Soc., 1953, 3265 ; 3279.
5) S. Smolihski, Totrahedron Lettors, 1965, 457.
6) J. F. Brown, Jr. and P. I. Prescott, J. Amor. Chem, Soc.,

86, 1402 (1964).

[^0]: *The reduced ε-values of $I I_{b}$ and $I I_{c}$ corresponding to the unit chromophore were compared with the ε-values of $I I_{\text {a }}$ taking the reduced values of $I I_{c}$ as unity. ** Clar's nomenclature.

